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1. Introduction

Interests in the artificial neural ﬁetwork {NN) model and its applications in
climate science are growing rapidly during the last decade. These interests result mainly
from progress in developments of efficient training algorithms in the NN field, the
accessibility of large quantities of climate data for analysis, improved understanding of |
the complex climate systems, and/or the availability of powerful personal computer
hardware for running simulations and predictions of NN models. In contrast to the
conventional linear, deterministic models, the NN is a powerful and nonlinear system
capable of handling a wide range of applications. These include seasonal climate
predictions (c.g., Hastenrath, 1995; Sahai et a., 2000; Chu and Yan, 2000), statistical
downscaling (e.g., Chu and Wu, 2001), and time series analysis of nonlinear dynamic
systems. A NN system cz;n be recognized as an advanced pattern recognition technique,
and this pattern recognition can be employed efficiently for simulations and predictions.

The main objective of this project is to develop an artificial NN model and test
this model’s ability in predicting summer rainfall for Taiwan. This is the second year of
the project. During the first year, we developed a prototype NN model using the gradient
descent method which is a slow but stable leaming law. For the second year, our focus is
to improve the model’s performance by introducing a faster learning law called the
adaptive learning rate. To allow the learning be as fast as possible, an appropriate weight
initialization method is introduced. With these improvements in model’s algorithms, we
have tested model’s forecasting skills using cross-i/alidation_ techniques. The computer
code fdr running NN models has been successfully transferred to thé Forecast Center of

Central Weather Burecau. To complement the current project, we have applied the NN



model to simulate daily rainfall in Taiwan (Please see Chu and Wu, 2001 in the

attachment).

Z NN structure

. The network consists of three layers: the input layer, the hidden layer, and the output
layer (Fig. 1). It is fully connected so that there are links betw.een all the nodes in the
adjacent layer.. Each link has a connection strength, called the weight, which is stored by
the neuron at the receiving end of the link. The weight is unknown and needs to be
determined iteratively. Note that the link is separate from each input node to the hidden

node, and from the hidden node to the output node.

3. Basic concepts of NN systems

As demonstrated in Fig. 1, each node in the input layer brings into the network the
value of one independent variable (X;). In our case, X; may represent cach dominant
éxtended empirical orthogonal function (EEOF) mode of the SST indices. Zy may
represent simulated rainfall outputs at each station and they need to be comparéd with the
actual rainfall values for the purpose of determining model’s ability in predictions or
simulations. Each hidden node calculates a weighted sum of the input using a sigmoid
function, which simply équashes the sum down to a limited range, say, between 0 and 1.
In this project, we used a logistic function (g(u)) and hyperbolic tangent function

{tanh(u)) such as:
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where u is the weighted sum of the value recetved from the hidden node. Each output
node performs a similar function as hidden node by calculating the weighted sum from
the output of hidden layers. To simplify the computation and understanding the network,
the outpﬁt node uses a linear function (Hsieh and Tang, 1998). The output values (z) are
then compared with the target value (t) to determine the error (E), which is shown as:
K
E=TF (zx—t)

k=1
where K is the number of output nodes.

For each observation used as an input, there is a forward pass through the
network, from inputs to outputs. Each gutput node then propagates the €rrors back to the
hidden nodes (i.e., backpropagation). The hidden nodes use these errors to determine
which direction and how much the weights should be changed. The backpropagation is

_designed to minimize the average squared errors. The key concépt in backpropagation is
the sensitivity of the network’s error to changes in its weights. In other words, we need
to know how the partial derivatives of the error are with respect to the weights. Training
begins with arbitrary values of the weights and proceeds iteratively. Each iteration is

called an epoch. In each epoch, the network adjusts the weight in the direction that



reduces the error. As iteration continues, the weights generally converge to the optimal

values. The overall structure is as follow.

Do
Fori=1ton
Go to subroutine Forward
Go to subroutine Backward
Continue
Go to subroutine Changeweights
Enddo

The method to calculate the weight changes is gradient descent, which is a
conventional way. Simply stated, one selects an arbitrary point in weight space and
corﬁputes the slope of the error surface at this point. Change the weights in the direction
in which the error sﬁrface goes down most steeply (i.e., steepest descent). Continue
repeating the process until the new weight approaches the lowest point in the error
surface. Steepest descent involves moving a small step down the local gradient ofa
scalar field. As an example, the gradient for the output layer 1s:

S =ddk - (zx—t)’
where d8, is the derivative of the sigmoid function at z for each output node k.

In comparison to the steepest descent, the method of Adaptive Learning Rates
(ALR) is much faster to converge on the set of weights that produce minimum errors.

The ALR is also very dependable, not prone to get into troubles. Although it requires the



knowledge of some parameters, the results are not sensitive to the values of these
parameters (Smith, 1996). Because it is faster, dependable, and highly automatic, we
recently adopted this method. The idea of ALR is simple. Let e denote different learning
rate for each weight in the network. If the direction in which the error decreases at this

- weight-change is the same as it has been decreasing recently, one makes e larger.
Otherwise, makes e smaller. Once the learning rate is determined, the actual weight-

change is given as:

Cm = -Cm dm

where dpy, is the partial derivative of the error at a weight at epoch m.

To begin the learning process, we need to assign some initial values to the
weights. Note that initial values were fixed and the learning rate was slow during the
first year of the project. Recently, an appropriate weight initialization scheme has been
implemented so the learning becomes as fast as possible. When the weighted sum of
inputs is close to zero, a node’s output is close to 0.5, which is the midpoint of the
logistic function. In the face of uncertainty, this mid-range value would be the best
guess.

For the hidden nodes, the initial weights can be assigned to a very small value so
that a node produces mid-range outputs. However, these weights should be different
from one node to another. For the output nodes, a different strategy is adopted. The
initial weights should be large since these weights are used in calculating the error

derivatives of the hidden-node weights. It 1s recommended to keep half of the mitial



weights with the value of one and the other half with the value of minus one (Smith,

1996).

4, Application

We have collected, processed, and updated long-term rainfall and sea surface
temperature (SST) records for this project. Rainfall records for 16 major stations in
Taiwan during the period 1956-2000 were kindly provided by Mr. Guay-Hong Chén of
the Forecast Center of the Central Wéather Bureéu. Monthly rainfall data were summed
to seasonal values (July, August, and September) before being standardized. Likewise,
the monthly SST data are transformed into standardized seasonal anomalies. For the
SST used as the pfedictor variable, the domain covers the Pacific Ocean (50°N-40°S,
120°E-90°W) and the Indian Ocean (20°N-40°S, 20°E-120°E). This is different from
Chu (1998) in which only the Pacific SSTs were used. To facilitate the analyses, the
original SST data, which are at 2.5° latitudes x 2.5° longitudes, are averaged into 10° lat
by 10° long boxes. This yields 125 boxes for the Pacific Ocean and 41 boxes for the
Indian Ocean. By including the Pacific Ocean and the Indian Ocean, it is possible to test
the importance of near-global boundary conditions on summer rainfall predictability for
Taiwan. |

Another new approach in this project is the consideration of the well-known
persistence in SSTs. We calculated_the Exteﬁded Empirical Orthogonal Function (EEOF)
of S8Ts at 3-month intervals over a one—year‘ period prior to the éummer rainy season.
That is, the SST field evolves over one year period. For instance, at one-month Iead, the

SST from June of the previous year to May of the current year over the Pacific and Indian



Oceans are used. The leading six EEOF modes are retained because they are significant
from the background noise (Wilks, 1995). In addition to spatial compression, the EEO¥F
analysis enables us to capture propagating features of the SST.  This is achieved by
stacking the four temporal series of the SST field into a large matrix so that the evolution
of the SST spatial pattern over a one year period is preserved. Note that the evolutionary
feature of the SST was not considered in Chu (1998) for predicting Mei-yu rainfall in
Taiwan.

To evaluate the overall forecasting ability of the NN system, a cross-validation
technique is used. Cross-validation is a computer-intensive method. Each time, one
point from the rainfall records and SST datasets is omitted, the NN model is
reconstructed, and a forecast (or hindcast) for the omitted case (rainfall) is made. By
repeatedly going through the entire records, one may obtain as many numbers of
forecasts as the original obsérvations. The hit rate is used to provide a verification
measure, and both the observed and predicted rainfall is expressed by their percentile
rank. A 3 x 3 contingency table of categorical forecast is used (Chu and Wu, 2001),
where dry condition refers to <33.3%, normal condition is between 33.3% and 66.6%,
and wet condition is more than 66.6%. The hit rate is defined as the ratio of number of
hit (both forecast and observation fall into the same category) to .the total number of
events. Note that hit rate varies between zero and one, with zero being the worst skill
and one being the perfect skill.

As an example, Fig. 2 shows the cross-validated forecast skill of the NN model in-
summer rainfall prediction af one-month lead. A logistic function is used. .Evidently, 15

out of all 16 stations exhibit a moderate hit rate with a value greater than 0.4. The higher



skill is found at Keelung (0.59), Jiu-Yueh-Tan (0.52), Alishan (0.50), and Hsinchu (0.50).
The average rate of these 16 stations is 0.443. In a comparison study, an advanced linear
model called canonical correlation analysis (CCA) was developed in predicting JAS
rainfall using the same predictor field and same EEOF modes as the NN prediction
system (Chu and Yan, 2000). The average rate of CCA-based prediction system turns
out to be 0.386, lower than the NN model. If a hyperbolic tangent function is used in the
NN system, the spatial distribution of hit rate varies somewhat (n_ot shown), and the best
skill is found in Penghu (0.69), and Hengchun (0.67). This result is interesting since
Penghu always suffers from drought and the high predictability of summer rainfall
demonstrated in this project may pave a way to better cope future climate uncertainty for
an islet in the Taiwan Strait. There is a slight decrease in predictive skill for Keelung
(0.54) and Hsinchu (0.48) in comparison to that in Fig. 2. The average rate from 16 .
stations based on the hyperbolic tangent function is 0.427,7a value slightly lowér than the

case when the sigmbid function was employed.

5. Summary and future work

Durixig the two-year project period (2000-2001), a great amount of effort has been
devoted to the development of an state-of-the-art computer code of neural networks and -
their applications to summer rainfall prediction as well as statistical downscaling of daily
rainfall in Taiwan (Chu and Wu, 2001). For the first year, a forward computer program
and an error derivati?e algorithm were developed, and a linkage of various subroutines
into a comprehcnsive computer program was made. For the second year, a more efficient

algorithm called the adaptive learning rate to achieve minimum errors is implemented.



This method is faster and more reliable than the commonly used steepest descent method.
In order for the leaming process to start as fast as possible, a weight initialization
procedure is introduced. This overcomes the problem of the fixed initial values for
weights during the first year. Mdreover, given these additions, the NN model’s
performance in rainfall prediction has been tested in a cross-validation scheme. The
predictand is summer rainfall for 16 stations in Taiwan and the predictor field is the
extended EOF of SST from the Pacific and Indian Oceans of the preceding seasons.
Prediction experiment is conducted at a one-month lead. Forecasted rainfall is compared
with the observed rainfall and hit rate is used to provide a measure of predictive skills.
Results indicate that the cross-validated hit rate for most stations 1s well above the no
skill level and a few stations have values greater than 0.5. Thus, there is a moderate
predictability for summer monsoon rainfall, given the knowledge of the antecedent SST
pattern and its time evolution. Also note that the overall predictive skill by the NN model
is better than that by the corresponding, linear CCA model.

It should be noted that only the SST is used as the predictor variable. To the
extent that the Earth’s climate system we wish to predict is complex, predictive skills
exhibited in this project can be regarded as a lower bound estimate for the actual
predictability of the system. To improve the skill, other variables such as atmospheric
teleconnection indices and the prior state of sea:_sonal rainfall may be included.
Furthehnore, one may attempt to optimize the weights of the predictor fields prior to the
prediction experiments. Recently, in predicting seasonal rainfall for east Africa, Ntaier
and Gan (2001) demonstrated an overall improvement in predictive skills relative to those

which are unoptimized.
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" InputLayer  HiddenLayer OuiputLayer ’

. Neural network

~ Fig. 1. A three-layer feed-forward neural network model. In this example, there are
six nodes in the input layer, *three nodes in the hidden layer, and five neurons in the
output layer. The w;; and w . are the weights. '
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Fig. 2. Cross- vahdated hit rate of NN prediction for JAS rainfall during 1956-2000 in
Taiwan. The lead is one month and the logistic functlon is used.
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