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1. INTRODUTION

The objective of this project is to develop a prototype neural network (NN) model and
test this model’s ability in long-lead seasonal rainfall prediction for Taiwan. In my previous
projects funded by the Central Weather Bureau, an advanced linear model called canonical
correlation analysis (CCA) was developed in predicting Mei-Yu (May/June) and typhoon season
(July through October) rainfall for Taiwan (Chu, 1998; Chu and Yan, 2000), Long-term rainfall
records (1956-98) from sixteen stations in Taiwan and the antecedent sea surface temperature
{S8T) data for the Pacific and/or Indian Oceans were used. To provide an overall evaluation of
the CCA skill, cross-validated correlation coefficients between forecasts and observations at one-
month lead were attempted. The lead time is defined as the number of months between the last
month of the predictor (SST) data and the first menth of the predictand (rainfall) field. A one-
month lead implies that the last month of the SST ficld is May for the typhoon season prediction.
Cross-validation is a computer-intensive method. One point from the SST and rainfall datasets is
omitted each time, the CCA model is reconstructed, and forecast for the omitted case (for rainfall)
is made. By repeatedly going through the entire records, it 1s possible to obtain as many sample
sizes of the forecast as the original observations.

For the typhoon season prediction, the CCA ¢ross-validated correlation skill at cne-month
lead reaches 0.43 for Ilan and 0.37 for Keelung (significant at the 5% level). For Taichung,
Tainan, and Kaohsiung, however, the skill is near zero or even negative (Chu and Yan, 2000). In
general, rainfall predictability is higher in the northeastern Taiwan but much lower (or no skill} for
the western plain. To the extent that the Earth’s climate system we wish to predict is nonlinear,

seasonal rainfall predictability from linear models can only be regarded as a lower bound estimate



for the actual predictability of the system.

On the other hand, the NN is a nonlinear and powerful tool which was recently developed
to handle a wide range of applications including seasonal climate predictior_ls (e.g., Hastenrath,
1995; Navane and Ceccatto, 1994; Silverman and Dracup, 2000), time series analysis of
nonlinear systems such as the Lorenz equations, and statistical downscaling (e.g., Zorita and von
Storch, 1999). Basically, a NN is trained to recognize patterns of interests in datasets and this

pattern recognition capability can be employed effectively for prediction experiments,

2. NEURAL NETWORK MODELS
We use the fully connected three-fayer, feed-forward NN system. In this system, the NN

consists of three layers - the input, hidden, and output layers (Fig. 1). Each node
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Fig. 1. A three-layer feed-forward neural network model. In this example there are six nodes in
the input layer, three nodes in the hidden layer, and five neurons in the output layer. The w;
and w¥,, are the weights,
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in the input [ayer brings into the network the value of one independent variable (i.e, X). In
application, each X; may represent a dominant empirtcal erthogonal function (EOF) mode of the
SST and the outputs, Z,, may represent a simulated rainfall at each station in Taiwan. The
network is fully connected in the sense that there are links between all the nodes in adjacent
layers. Each link has a “weight” and each weight may have different values. Note that a separate
link (i.e., different weights) exists between each input node and each hidden node, and between
each hiddennode and each output node. Often, a bias weight is added to each hidden node and
output node.

The network operates in two modes, mapping mode-and learning mede. In mapping
;,nqde, information flows “forward” from inputs to outputs. Training begins with arbitrary values
for the weights and proceeds iteratively. Each iteration is called an epoch. In each epoch, the
network adjusts the weights in the direction that reduces the error, which is the difference
between the current outputs (e.g., simulated rainfall) and target outputs {e.g., actual rainfall). As
the iteration continues, the weights generally converge to an optimal value. Many epochs are
required before an optimal value is reached.

In learning mode, information flows “forward” and “backward” consecutively. The input
nodes send values to all the hidden nodes. Each hidden node calculates the weighted sum of the
inputs. Then each hidden node computes a sigmoid function of its weighted sum. The sigmoid
function simply squashes the sum down to a limited range. A variety of sigmoid functions can be
used including the hyperbolic tangent function, logistic function, linear transfer function, and
others. Subsequently, each hidden node sends the squashed values to all the output nodes. Each

output node performs a similar function as the hidden node by calculating the weighted sum from



the outputs of the hidden layer and then use a transfer function (linear or nonlinear) to compute
new outputs,

For each observation used as an input, there is a forward path through the network to
generate the current output. It is followed by a backward path to determine how the weights
should be adjusted. At the end of each epoch, all the weights in the hidden and output layers will
be changed. The “backpropagation” method is used for adjusting the weights. This name is
derived from the fact that error (i.e., the difference between the target function and neural’s
output} information is sent back from the output nodes to the hidden nodes.

The key in back propagation is the sensiti‘vity of the network’s error to changes in its
weights. All the nodes change their weights based on the accumulated derivatives of the error
with respect to each weight. In other words, it is necessary to determine how the partial
derivatives of the error change with respect to the weights. We used a learning law called the
steepest descent method, which moves the weights in the direction in which the error declines
most rapidly. This is analogous to a skier who always moves downhill through the mountain unil
he hits the bottom. Steepest descent involves moving a small step down the local gradient of the
scalar field. Although this method is a stow technique, it is the only method that has been proven

mathematically to converge on the set of weights producing minimum error.

3. PRELIMINARY RESULTS
We accomplished five tasks (1) data collection and processing, and data reduction, (2)
development of a forward algorithm, (3) development of an error derivative algorithm, and (4)

linkage of various subroutines into a comprehensive computer program. For task (1), we



collected and processed seasonal rainfall records for 16 stations in Taiwan, The record length is
1956-1998. All monthly records were kindly provided to us by Mr. G.-H. Chen of the Forecast
Center of the CWB. The montﬁly data were transformed to seasonal values and then
standardized. To focus on the dominant modes of variability, the seasonal and standardized
rainfall indices are subject to an EOF analysis.

We also successfully collected long-term SST data for the Pacific Ocean {50°N-40°8,
12G°E-90°W) and the Indian Ocean (40°$-20°N, 20°E-120°E). Using the original data at 2.5°
latitude x 2° longitude grids, these data are then averaged into 10°lat by 10°long gridpoints to
facilitate the subsequent analyses. This yields 125 grids for the Pacific Ocean and 41 grids for the
Indian Ocean. For the South China Sea, the data set was processed at 4° x 4° because of its
smaller domain, yielding 30 grids. Note that the Indian Ocean and the South China Sea datasets
are new to this project. By including the Pacific Ocean, the Indian Ocean as well as the South
China Sea we can test the variations of nearly global boundary conditions on seasonal rainfall
predictibility for Taiwan. Because the SST is known to have persistence, we used the SST data
field, evolved over 1-yr to be the predictor variable. Specifically, we calculated the extended EQF
(EEOF) at 3-mo intervals over a one year period prior to the rainy season. In additien to spatial
compression, the EEOF analysis enables us to capture propagating features of the SST. This is
achieved by stacking the four temporal series of the SST field into a large matrix so that the
evolution of SST spatial pattern over a one year period is preserved.

As stated in Section 2, the forward procedure (Task 2) goes through each of the hidden
nodes in the network and calculates the weighted sum of inputs for each of them. This weighted

sum is then fed to a sigmoid function which sends its new value to the output layer. Weuse a §-



shaped sigmoid function so that the sum of all weighted inputs is bounded between 0 and 1. Once
the output node receives information from the hidden layer, it will work in the same way as the
hidden nodes. During training, its output will be compared to the specified target value.
Accordingly, the error derivative procedure (Task 3) calculates the error derivative for each

weight,

As an example, Figure 2 shows the time series of a target function and the model’s output
(Z). The target function is a highly nonlinear sinuscidal wave. In this simple example, only one
input node, five hidden nodes, and one output node are considered. A nonlinear logistic function
is employed in the hidden layer and a linear transfer functicn is used in the output layer. The
weights are prescribed (fixed) before the experiment. Although not perfect because the
changeweights program was not implemented, the simulated output matches the target function

quite weil.

Fig. 2. Target function (solid curve) and network output {open circle) as functions of
network input (X).



Since March this year, the changeweights subroutine has been developed and various
subroutines have been linked in one computer program (Tasks 3 and 4), We also tested the
prototype NN model using a real—ﬁ;)r[d problem. A case in point is the application to rainfall
prediction during the typhoon season. In order to appreciate the utility of the NN model, a

comparison is made with the CCA prediction, Figuréu.lé shows the CCA cross-validated
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Fig. 3. CCA cross-validation correlation skill for summer (JASO) rainfall at one-month lead.




correlation skill of JASO rainfzll at one-month lead fof Taiwan. The inputs are the leading eight
modes of the SST field and the leading four modes of the rainfall field. These modes explain 85%
of the variance in the SST datasets and 60% of the variance in the rainfall datasets.

Figure 4 shows the similar skill at one-month lead but using the NN model. In comparison

to Fig. 3, the skill for the northeasiern Taiwan from the NN model remains essentially the same as
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Fig. 4. Neural network cross-validation correlation skill for summer (JASO) rainfall at one-month

lead.




that predicted by the CCA model, with a value hovering around 0.4. However, large differences
between Figs. 3 and 4 are found in the western plain. No skill or even negative skill was found at
Taichung, Tainan, and Kaohsiung in the CCA scheme but predictive skills have improved
remarkably for those stations in the NN system (up to 0.64). Chengkung is another good example
in which rainfall prédictability increases substantially from 0,24 in Fig, 3 to 0.66 in Fig. 4.
Sirmilarly, there is also a notable improvement in skill for Taipei from 0.12 in the CCA scheme to
0.50 in the NN analysis. The above test clearly suggests that the NN model shows great promise
as a new predictive tool in short-term climate prediction, particularly in the area where finear
models have severe limitations in faithfully predicting real rainfall activity.

In the future, we intend to move into the next phase of the project, which is, designing a
more efficient algorithm to achieve minimum error. In this regard, we will adopt the adaptive
learning rate because it is faster and more reliable than the commonly used steepest descent
method. This is te be followed by a proper weight initialization procedure which will get the
Jearning process to start as fast as possible. Note that the fixed initial values for weights are used
at present, With these additions, we will then test the model’s performance in seasonal rainfall

prediction experiments more rigoreusly.
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