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1. Intreduction

Most numerical weather prediction (NWP)
models employ a bulk-type cloud microphysics scheme
to account for grid-resolvable precipitation processes.
The bulk-type cloud microphysics is one of time-
demanding components in the NWP model, even though
it is cheaper than the bin-type scheme. As compared to
the continuous efforts given to the development of the
advanced microphysical processes in cloud modeling
area, a few efforts have been given to the improvement of
the accuracy in computing sedimentation process for
precipitating particles in the cloud modeling area in
atmospheric models. Most NWPs in computing the
sedimentation of precipitation, almost ali the cloud
schemes use a sub-time step so that falling particles do
net cross the vertical grid within the model time step.
Aside from uncertainties in numerical accuracy, this
procedure is time demanding as the model resolution is
lower. The immediate method to remedy such a
problem is to replace the Eulerian advection by the semi-

Lagrangian (SL; hercafter) advection with large time step.

Pellerin et al, (1995) and Grabowski and Smolarkiewicz
(1996) used a SL advection for the cloud model without
consideration of mass conservation. Kato (1995)
introduced a box-Lagrangian scheme to raindrop
advection with mass conservation; however, the box-
Lagrangian scheme is a first order for interpelation,
which produces diffusive result. There are several high
order interpolation schemies, at least higher than first
order, that have been used in SL advection with
considering mass conservation. These mass conserving
SL scheme have been applied to horizontal advection for
traces, and efforts to the sedimentation for precipitation
have not been given. Despite such advancement in the
numerical algorithm, the most cloud schemes in NWP
and GCMs still employ the classical Eulerian advection
scheme.

This study proposes a SL scheme with higher
order interpolation to improve the numerical accuracy
and its computation efficiency in computing the
sedimentation of falling precipitation drops.
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2. Mass conserving tracer equations

In this section, we follow the idea of Juang
(2007, 2008) to introduce a one step forward SI. scheme
with mass conservation and positive definition, and
illustrate a necessary modification to take care a leading
shock wave to avoid a negative cell advection.

a. Forward semi-Lagrangian advection with rmass
conservation and positive definition

Since the falling speed depends on the water
mass along its path, it is a good approximation to use
initial terminal velocity for the advection. Thus we use
forward scheme without iteration to dctermine the path
from the departure point, which is the model grid point.
The sedimentation of falling precipitation can be written
in flux form as
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where all variables are as usual meteorological use, # is
density of air, ¢ mixing ratio of precipitation water
substance, such as rain, ice, snow or graupel, and Viis
the corresponding terminal velocity. The Eq. (1) can be
written in advection form, based on Juang 2008 as
dpa
dr (2)
which is a total derivative or Lagrangian form of flux-
form advection of Eq. {1). Since A2 represents mass of
the precipitation, the Lagrangian form tells us that mass
conservation can be obtained in Lagrangian way as
(qu)A = (qu)D (3)

where sub A and sub D are arrival and departure
locations following the terminal velocity in a given time
step, and A can be replaced by A7 as cell thickness in
vertical. Since we use model grid point as departure
focation, the arrival location has to be interpolated back
to modet grid point to complete one time step. As long as
the interpolation is monotonic, positive definition, we
have a forward SL advection for sedimentation of



precipitation with conservation
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where « is coefficient for interpolation or averaging
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Thus, we can have discretization of Eq. (3} from
departure time n to arrival time n+1 as
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Since each of the interface for a given model layer is the
mterface of the neighbor model layers, the mass
conservation in each model layer in this Lagrangian
advection indicates that total mass is conserved during
advection.

b, Modification 1o avoid negative cell advection

Though mass conservation is discretized in Eq.
{6), it does not mean that arrival mass has to be positive.
Since departure mass is positive and departure cell is
positive as the model layer, the right hand side of Eq. (6}
is always positive. However, it is possible that difference
of winds at a given celi edges produces negative cell
depth at arrival time, then the arrival mass has to be
negative to satisfy Eq. (6). To avoid negative mass at
arrival time, we have to avoid negative cell depth at
arrival time.

To avoid negative arrival mass due to negative
arrival cell depth, we obtain following condition
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which was called deformation CFL condition (DeCFL),
as mentioned in Xiao et al. (2003). To avoid the violation
of Eg. (7}, we alter the value of falling speed at the
bottom cell edge by scanning from model top to surface
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where ¢ has to bc less than i, and it is a tunable
parameter by experiences. For practical sense, we use
0.05 in our cases, which is the same as 1-’?2, where % is
0.95, in Xiao et al. (2003) for their modification of
falling displacement.

3. Case results
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The SL scheme for  sedimentation  of
precipitating drops, deseribed in the previous section, is
cvaloated in the WSM3 scheme, against the current
method of the Eulerian advection with sub-time steps.
Note that, for simplicity and practical sense, forward
option without iteration as described in section 2.a and
2.b are used in this section.

We will follow the experimental setup of Xiao
ct al. (2003) to use their twe theoretical cases to examine
proposed SL. scheme as described in the previous section.
The initial distribution of the rainwater is defined (follow
Kato 1993) in Xiao et al. {2003) as
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where A is in g/m’, % is 1.0x10* m, and D is in m. The
computational domain is 0=z=<1400C m. An equally
spaced grid with A = 70 m is used for ali experiments in
this scction. Two conditions of terminal velocity are
cxamined, one is a constant terminal velocity as 5 /s,

another one is a function of A as
0115
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which is used in Xiao et al. (2003).

Figure 1 demonstrates that the new method of
SL scheme reasonably reproduces the results as shown in
Xiao et al. (2003) (in their Fig. 2}, ht indicates that the
higher the erder of the interpolation method is, PCM,
PEM and PPM, in that order, the less the diffusion occurs
as compared to analytical solution, Note that, our PPM
with the maxima of 0.9 g is very close to the result from
their cubic method with the maxima at 0.8 g, but with
higher accuracy. It indicates that our scheme has less
diffusive than theirs.

Figure 2 shows the results from the second case
with terminal velocity as a function of water density with
correction of bottom edge terminal velocity due to
DeCFL as mentioned in section 2. with ¢=0.03. It shows
that it is possible for this scheme to have reasonable
results even up to 120 s as time step, much larger time
step than Xizo et al. (2003). Figure 5 shows the results of
comparison between no iteration and iteration with
bottom edge terminal velocity correction. The left pancls
are without iteration, right panels are from two iterations.
Then tap panel is from PLM and bottom panei is from
PPM. No matter which methed is used, it indicates that
iteration could reduce the unstable noise as shown with
time step of 120 s. Furthermore, we put this scheme into
WSMa cloud scheme (Hong and Lim 2006).
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4. Discussion

Our  theoretical  results  demenstrate it
comparable performance against a conventional Euelrian
approach and other SL methods, The third order PPM
methods outperforms the PCM and PLM methods, based
on the example with constant terminal velocily, even



more accurate than Xiac et al. (2003} results in their
highest order scheme. The deformation at the leading
edge of maximal falling precipitation in the test case
shows DeCFL condition to restrict time step within 30 s
for our proposed SL scheme. The modification to the
falling velocity at the bottom edge of any given cell from
model top to model bottom avoid this DeCFL condition,
which allows us to large time step up to 120s without a
significant altering of the precipitation profile.

Considering both the accuracy and efficiency of
the proposed SL scheme within the cloud scheme testbed,
the PLM method is a good choice. It is also found that
the mean terminal velocity with iteration may not be
necessary if stability is not concerned. Thus, the terminal
velocity at departure point without iteration is accurate
enough for falling precipitation in practice.
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Fig.1 The theoretical test with constant terminal
velocity with different width of rainfall patters after 20
min integration. Solid curve is from analytical solution in
each case, experimental results from piecewise constant
method (PCM), piecewise linear method (PLM), and
piecewise parabolic method (PPM) are indicated by x, +,
and o, respectively.
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Fig. 2 Results from theoretical case with terminal
velocity as function of raindrop. Each panel shows mass
of raindrop per cubic meter at every 4 min intervals up to
12 min with PPM as interpolation method in different
time steps of 10, 30, 60, and 120 s with DeCFL
correction with ¢=0.05.
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