Predictions of Global Sea Surface Temperature Anomalies:
Introduction of CWB/OPGSST1.1 Forecast System

Shu-Ping Weng', Yea-Ching Tung’, and Wen-Hao Huang®

1: National Taiwan Normal University, 2: Central Weather Bureau

Abstract

Skillful prediction of SST a few seasons in advance is essential for the success of two-tier
forecast system to make seasonal climate prediction. The newly developed global SST prediction
system at CWB, OPGSST1.1, an optimized combination of dynamical and statistical forecast
modules using superensemble technique, is introduced in this report.

Prediction skills of OPGSST1.1 in different time scales are verified to be comparable with
those of other systems. Particularly, the spring predictability barrier (SPB) of ENSO forecasting
is largely reduced after ensembling two statistical predictors: upper ocean heat content anomalies
(OHCA) in the tropical Pacific and sea level pressure anomalies (SLPA) over the Philippine Sea
into the system. The former substantiates the delayed oscillator paradigm that the memory of
ENSO dynamics is mainly stored in the subsurface thermocline depth displacement, and the
latter demonstrates the importance of SLPA in the western north Pacific as the precursor to the
ENSO turnabout. Prediction skills of warm and cold SST conditions around the globe are also

discussed.
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- 1. Introduction

One of the major tasks of the ongoing climate
prediction project at CWB is to establish the two-tier
climate prediction system with a 7-month lead time.
Proposed by Bengtsson et al. (1993), it predicts future
atmospheric conditions using an AGCM alone forced by
pre-forecasted SSTs. In this approach, the prediction skill
depends on several factors. First, it works for the most
important forcing (Equatorial Pacific SST) and for those
regions where SST determines the local wind
convergence while SST itself is primarily determined by
ocean processes, but it has limited capability where
atmospheric forcing play a major feedback to the ocean
(Wang et al. 2004, 2005). Second, it depends on the
accuracy of the pre-predicted global SST, which
provides the major boundary forcing to drive the stand
alone AGCM. Third, it depends on the capability of
AGCM in catching the predictable part of atmospheric
variability possibly. This report focuses on the second
issue.

2. OPGSST1.1 prediction system

The CWB/OPGSST system is designed in a flexible
way to combine multi-SST predictions from both
dynamic and statistical modules to make an ensemble
forecast. The flexibility is reserved in the sense that the
systemn serves as- a template that can easily takes new
prediction made by other centers/methods into account as
long as their prediction skills have been verified. The
complete  document concerning the  physical
consideration, configuration, procedure, and data sources
of CWB/OPGSST system is described in Weng et al.
(2004a).
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Theoretical works and diagnostic studies have
suggested that ocean subsurface thermocline adjustment
plays a central role in the ENSO dynamics. The
subsurface temperature signals and upper ocean heat
content (UOHC), an integrated measure of the
thermocline  displacement, often provide useful
precursory signals for ocean mixed layer (or sea surface)
temperature prediction. This is especially true when the
predicted time scale becomes increasing longer. Indeed,
the establishment of zonal-mean UOHC anomaly in the
equatorial Pacific sector several seasons in advance has
been found by many diagnostic studies (e.g. McPhaden
2003) and coupled model simulations {(e.g. An and Kang
2000) to be an indicative of the onset and demise of
ENSO episodes. Impacts of ENSO event have been
recognized as the most important source to the changes
of global climate system in the interannual timescale.
Skillful prediction of forthcoming ENSO episodes
provided by the underlying thermocline displacement is
thus desired.

Potential skill improvements by using UOHC in
the tropical Pacific. (hereafter TPOHC) as predictors for
regional as well as global SSTA predictions have been
suggested by Weng et al. (2004b). Recently, efforts have
been made to upgrade OPGSST system from version 1.0
to 1.1 by incorporating the SST predictions generated by
TPOHC predictors. In the following, the performances of
OPGSST1.1 are examined by running the system in the
hindcast mode (“take-one-out” Jackknife
cross-validation) to produce future 7-month GSSTA
predictions.

3. Prediction skill of GSST anomalies



Fig.1 shows the 6-month lead NINO3.4 index
predicted by the OPGSSTI1.1 (dashed lines).
Superimposed are the observations (solid lines),
consensus predictions (CONS, simple averaging of all
modules), and the predictions made by individual
modules labeled in the bottom as ICM2A (Intermediate
Coupled Model version 2A), ICM2B (Intermediate
Coupled Model version 2B), PER (damped persistent
forecast), NINOP6F7 (use past 6-month SSTA in the
NINO3.4 domain as predictors), PSLP3F1 (use past
3-month SLPA in the Philippine Sea as predictors), and
TPOHC (use past 6-month TPOHC as predictors).
Although individual model shows different degree of
deviations, predxcted evolution of NINO3.4 SSTA by the
OPGSST1.1 closely follows the observations. In fact,
simple consensus averaging, which assigns equal weight
to each prediction, already showed good skill for the
ENSO predictions. The OPGSST1.1 using multi-model
superensemble method (MMSE, Krishnamurti et al.
1999), which assigns optimized weight to individual
module based on its past skill performance, further
improves the skill as the lead time becomes increasing
longer. Nevertheless, the phasing of major ENSO
episodes is found to be slightly delayed (1 ~3 months) as
compared with the observations. Compared with
statistical models, both dynamic ICM2A and ICM2B
model predictions are also found to have larger bias in

current OPGSST system.
Spatial  distributions of forecasted  skills
represented by pattern  correlation (PC) and

root-mean-square-error (RMSE) are shown in the left
and right panels of Fig.2, respectively. Skillful SSTA
predictions with high PC wvalues and low RMSE are
found to mainly locate within the 20° tropical band. As
lead time increases from 3-month to 6-month, prediction
skills are further restricted over the central tropical
Pacific, central Indian Ocean, "and northwestern Pacific.
Simultaneously, the RMSE increases rapidly in the
eastern tropical Pacific cold tongue and the storm track
regions of mid-latitudes. To further quantify the local
prediction skills, the Taylor diagrams for 8 key regions
over the tropical warm oceans are shown in Fig.3 where
the normalized RMSE, i.e., the RMSE scaled by the
observed standard deviation, is given by the radial
distance and the correlation coefficient between the
observed and predicted SST anomalies is given by the
cosine of the azimuthal angle. Making it simpler, only
the lead time equals to 1, 3, 5, and 7 months are marked.
First, skills of- OPGSST1.1 are found to surpass any
individual module after optimization. Second, skill of
current system heavily relies on the statistical modules
particularly for the long lead predictions. Assimilating
the predictions made by TPOHC predictors tends to
improve the long-lead skill in most areas. Dynamical
modules primarily make their contributions to the short
lead (1~~3 months) predictions of SSTA over the NINO3
and NINO1+2 regions. Third, the skills decay rapidly
after 3- month lead over the NINO1+2 and tropical
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western Pacific (TWPC) regions as no model shows
ability to capture the future SST evolution.

4. Season-dependent skill variability

Impacts of TPOHC predictors on the long-lead
prediction skills of OPGSST1.1 are demonstrated in
Fig.4a where the season dependent skill variability of
6-month lead ENSO prediction, portrayed by the
anomaly correlation of NINO3.4 index, are shown for
the PERSI, OPGSST1.0, TPOHC, and OPGSST1.1. The
well-known SPB is clearly shown in the PERSI model
(open circle): the prediction skills drop dramaticaily
when passing the northern spring season. Although a
better result was obtained through the MMSE procedure,
the SPB still exists in the previous OPGSST1.0 (solid
circle). In the new OPGSST1.1 (solid square), it is the
contributions of TPOHC predictors (open square) that
largely reduce the SPB problem as suggested by
McPhaden (2003) recently.

It should mention that the impacts of TPOHC
predictors are not always positive elsewhere. Fig.4b
shows the season-dependent skill variability in the South
China Sea (SCS) over which the so-called fall
predictability barrier (FPB) exists; the prediction skill of
PERSI model decreases while passing the northern fall
season. Incorporating the TPOHC predictions even make
it worse. Over this domain, it is mainly the NINOP6F7
model (plus labels) prediction that tends to remedy the
FPB problem.

Fig.5 examines the global perspectlve of the
season-dependent skill variability where the 6-month
lead PCs of standard DJF, MAM, JJA, and SON seasons
are shown in the left and right panels for PERSI and
OPGSST1.1 predictions, respectively. From DJF (JJA) to
JJA (DJF), reductions of prediction skili in the PERSI
are evident in the central-to-eastern tropical Pacific
(southern-to-eastern Asian monsoon oceans) originated
from the western coasts of Peru (southern Japan), These
predictability barriers are largely overcome in the
OPGSSTL.1; 6-month lead PC in the central-to-eastern
tropical Pacific during JJA seasons is raised from below
0.2 in the PERSI (Fig.5c) to above 0.6 in the
OPGSST1.1 (Fig.5g), and 6-month lead pattern
correlation in the Asian monscon oceans during DJF
seasons is also raised from below 0.4 in the PERSI
(Fig.5a) to above 0.6 at best in the OPGSST1.1 (Fig.5¢).
Prediction skills. elsewhere are also improved
demonstrating the power of MMSE method,

In addition to the post-processing procedure, the
major contributors to the improvements of SPB are
found to be both TPOHC and PSLP3F1 (Fig.6).
Although the latter is only secondary, it can affect the

final ENSO prediction skill while monitoring the

NINO3.4 index. Seasonality of the forecast skill has been
the subject of active research. Qur results indicate that
the predictability barrier exist the choice of robust
subsurface predictors that can substantially overcome
this barrier.




Fig.7 shows the scatter plots of observed against
forecasted SSTA for 6-month lead JJA seasons in the
NINO3.4 (upper paneis), and DJF seasons in the SCS
(lower panels) domains. For the PERSI (Figs.7a and 7c),
the skills are close to the white noise distributions of
predicted versus the observed SST anomalies. Although
the best linear fit lines (Figs. 7b and 7d) demonstrate that
the prediction skills for the SPB in the NINO3.4 and FPB
in the SCS domains are improved, the OPGSST1.1 tends
to underestimate the observed extremes. This might be
due to limitation of linear regression method.

5. Interannual skill variability

Observations and 6-month lead ensemble
predictions for the major ENSO episodes are shown in
Fig.8 where the x-axis corresponds to the DJF mean of
the indicated years and the y-axis indicates the ensemble
predictions for forecasts initialized during the preceding
JTA. Although the sign of the anomaly is well captured in
almost all the cases, individual model in general
underestimates the .observed amplitude. There is also
indication that the models perform -better and more
consistent during the El Nifio warm events but spread
wider during the La Nifia cold events. Nevertheless, the
OPGSST prediction tends to remedy for individual
model toward the observed magnitude.

in maintaining the high hit rate. In the warm tercile,
however, it seems that the NINOP6F7 model contributes
the most in the final OPGSST prediction.

We also calculated the hit rate as well as false
alarm rate of 6-month lead optimized predictions for
every grid point around the globe as shown in Fig.10.

- Comparing with the others, warm tercile (upper panel) is

Results of Fig.8 illustrate that current system can

predict the phase of ENSO with some extent of accuracy
at least two-season ahead. This is further explored in
Fig.9 where the hit rate versus false alarm rate plots of
warm, normal, and cold terciles are shown for 3- and
6-month lead ENSO predictions among model members.
The hit (false alarm) rate for different category is defined
as ratio of the total number of forecasted events
belonging to the specific category divided by the number
of times it was really observed (not observed). Note that
the hit rate and false alarm rate must be examined
together to prevent the so-called “crying wolf” problem
and the model prediction is usually considered as skillful
when the hit rate is larger than the false alarm rate.

Both warm and cold terciles express higher hit
rates and lower false alarm rates as compared with those
in the normal tercile. The OPGSST system tries to
optimize the final predictions by raising the hit rate and
at the same time keeping the false alarm rate as low as
possible in - all three categories. On the other hand,
although the simple averaging consensus prediction
(solid square symbols) works reasonably well for the
warm tercile, it does not work well for the cold tercile as
individual members show large inconsistence as
compared with that for the warm tercile. Additional
aspects are noted when increasing the lead time. First,
the prediction skill also lost the most in the normal
tercile as the hit rate (false alarm rate) decreases
(increases) rapidly. Moreover, the dynamical models
seem to have troubles in keeping the skillful predictions.
Second, it is found that the maintenance of skill in the
cold tercile is largely contributed by the TPOHC model
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found to have higher hit rate in the tropical Indo-Pacific
with centers locating in the central Indian Ocean,
subtropical’ northwestern Pacific, and off-equatorial
central Pacific to the south. Secondary high hit rates of
local warm SSTA. prediction are also found in the coast
regions of west Australia, eastern South America, and
castern Canada. On the other hand, higher hit rates of
cold tercile (bottom panel) are mainly restricted within
the Pacific Ocean basin with centers locating in the
central Pacific east of dateline, New Zealand Isl., and
northern Pacific north of Hawaii Isl. One thing
interesting is that the skillful cold SSTA predictions are
almost absent around the Asian-Australian monsoon
oceans. The normal tercile (middie panel) is found to
have the worst hit rate from the global viewpoint. Higher
hit rates are only limited to those ocean regions west of
Peru. ‘
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Figure 1 The observed (solid lines) and predicted

monthly-mean SST anomalies with 6-month
lead time in the CWB/OPGSST system
(dashed lines) over the NING3.4 domain
(170° W-to-120° W; 5° S-to-5° N) during
54-year period of 1950-t0-2003. Inside the
figure, the predictions made by individual
model involved in the system as well as the
consensus (i.e. simple averaging) prediction
are also marked by different labels at months
of January, April, July, and October.
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Figure 3 Taylor diagrams of the normalized RMSE and

correlation coefficients between observed and
predicted SST anomalies (with lead time = 1, 3,5,7
months) for consensus (yellow squares), optimized
(red dots), and individual model in different regions:
NINO4 (160 ° E-to-150° W; 5° S-to-5° N,
NINO3.4 (170° W-t0-120° W;5° S-10-5° N,
NINO3 (150° W-t0-90° W; 5° S-to-5° N),
NINO1+2 (90° W-t0-80° W; 0° -to-10° S),
(upper panels), tropical western Pacific (TWPC, 120
° E-to-160° E; 5° S-to-5° N), central tropical
Indian Ocean (CTIO, 60° E-t0-90° E; 7.5 S-to-10
° N), South China Sea (SCS, 100° E-t0-120° E; 0
° ~t0-20° N), and northwestern Pacific (NWPC,
120° E-to-160° E: 7.5° N-t0-22.5° N) (lower
panels).

Figure 2 The overall (1950-to-2003) pattern correlation
coefficients are shown for (a) lead time = 3 months and
(b) lead time = 6 months. Correlations larger than (0.5,

0.7, 0.8) are (light,

medium, heavy) shaded.

The

corresponding RMSE patterns are shown in (¢} and (d),
respectively Values of RMSE larger than (0.3°
0.5° YCare (hght medium, heavy) shaded.
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Figure 4 The forecast skills represented as temporal
anomaly correlations for persistent (PERSI,
open circle), OPGSST1.0 (i.e. OPGSST/NO
TPOHC, solid circle), TPOHC (open square),
OPGSSTI1.1 (solid square), and NINOP6F7
(plus label) model predictions are shown in (a)
and (b) for NINO3.4 and South China Sea
(SCS) domains, respectively, Note that the 12
target months, each has been with six-month
lead time, start from April through the calendar
year to detect the season-dependent skill
variability.

Figure 5 The six-month lead pattern correlations
(PC) between observed and damped persistent
[(@)-(d) in the left panels] predictions and
between observed and OPGSST1.1 [(e)-(h) in
the right panels] predicted global SST
anomalies. To save space, only the averages of
4 standard seasons: DJF, MAM, JJA, and SON,
each month is the 6-th month prediction, are
shown from top to bottom. Contour interval is
0.2, values of PC larger than (0.4, 0.6, 0.8) are
(light, medium, heavy) shaded.
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Figure 6 Same as Figure Sc or 5g, but for the results
obtained by using (a) TPOHC and (b)
PSLP3F1 statistical modules.
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Figure 8 The observed (solid circles) and six-month
lead forecasted NINO3 .4 indices by consensus
(solid squares) and OPGSST (open circles with
bars) predictions as well as by the different
members {marked by different labels shown in
the bottom) for 20 major El Nifio/La Nifia
episodes during the 1950-to-2003 period.
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Figure 10 Spatial distributions of hit rates for warm
{(upper panel), normal (middle panel), and cold
(lower panel) terciles when the lead time = 6
months. Contour interval is 20%; values of hit
rate larger than (40, 60, 80) % are (light,
medium, heavy) shaded.
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Figure 7 The scatter plots of observed (x-axis)

and six-month lead forecasted SST
anomalies (y-axis) for all grid points
located inside the NINO3.4 domain during
JJA seasons (upper panels) and for those
inside the SCS domain during DJF seasons
(lower panels). The (a) and (c) are the
results of damped persistent predictions
while the (b) and (d) are the results
obtained from the OPGSSTI.1 system.
The best linear fits (thick solid lines) are
also drawn.
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Figure 9 The hit rate (y-axis) against false
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alarm rate (x-axis) of warm (upper panels),
normal (middle panels), and cold (lower
panels) terciles of the ENSO prediction
measured by the NINO3.4 index. The left
and right panels are for the three-month
and six-month lead time, respectively. The
lines mark where the hit rate equals the
false alarm rate. Different modules are
marked by different labels (bottom).



